1. 拉格朗日流體
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 拉格朗日流體力學(xué)
一.線性插值(一次插值) 已知函數(shù)f(x)在區(qū)間[xk ,xk+1 ]的端點(diǎn)上的函數(shù)值yk =f(xk ), yk+1 = f(xk+1 ),求一個(gè)一次函數(shù)y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(diǎn)(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點(diǎn)。
首先,插值法是:利用函數(shù)f (x)在某區(qū)間中插入若干點(diǎn)的函數(shù)值,作出適當(dāng)?shù)奶囟ê瘮?shù),在這些點(diǎn)上取已知值,在區(qū)間的其他點(diǎn)上用這特定函數(shù)的值作為函數(shù)f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點(diǎn)上的函數(shù)值.
而拉格朗日插值法就是一種插值法.
3. 拉格朗日流體力學(xué)方程
關(guān)于代數(shù)方程的求解,從16世紀(jì)前半葉起,已成為代數(shù)學(xué)的首要問題,一般的三次和四次方程解法被意大利的幾位數(shù)學(xué)家解決.在以后的幾百年里,代數(shù)學(xué)家們主要致力于求解五次乃至更高次數(shù)的方程,但是一直沒有成功.對(duì)于方程論,拉格朗日比較系統(tǒng)地研究了方程根的性質(zhì)(1770),正確指出方程根的排列與置換理論是解代數(shù)方程的關(guān)鍵所在,從而實(shí)現(xiàn)了代數(shù)思維方式的轉(zhuǎn)變.盡管拉格朗日沒能徹底解決高次方程的求解問題,但是他的思維方法卻給后人以啟示
4. 流體拉格朗日方法
拉格朗日插值公式
線性插值也叫兩點(diǎn)插值,已知函數(shù)y=f(x)在給定互異點(diǎn)x0,x1上的值為y0=f(x0),y1=f(x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式p1(x)=ax+b使它滿足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線,通過已知點(diǎn)a(x0,y0),b(x1,y1)。線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線去近似地代替復(fù)雜的曲線,最簡(jiǎn)單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。
5. 拉格朗日流體網(wǎng)絡(luò)
設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。
6. 拉格朗日流體求解器
約瑟夫·拉格朗日
外文名
Joseph-Louis Lagrange
別名
拉格朗日
性別
男
出生日期
1736年
去世日期
1813年4月10日
國(guó)籍
法國(guó)
出生地
意大利都靈
職業(yè)
數(shù)學(xué)家
物理學(xué)家
代表作品
《關(guān)于解數(shù)值方程》和《關(guān)于方程的代數(shù)解法的研究》
主要成就
拉格朗日中值定理等
數(shù)學(xué)分析的開拓者
7. 拉格朗日流體模型
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問題時(shí),常用拉格朗日法
8. 拉格朗日流體連續(xù)方程推導(dǎo)
f(9)-f(4)=f′(x0)(9-4)
證明:由f(x)=√x,
∴f′(x)=1/2√x,
1/2√x=(√9-√4)/(9-4)
1/2√x=1/5
∴x0=25/4.
9. 流體 歐拉 拉格朗日
利用EDEM-FLUENT聯(lián)合仿真,采用VOF(Volume of Fluid)法和歐拉-拉格朗日模型,組成離散固體與連續(xù)的液相和氣相的混合模型,對(duì)攪拌罐內(nèi)固-液-氣三相流動(dòng)進(jìn)行數(shù)值模擬,探究固體顆粒在攪拌罐內(nèi)的運(yùn)動(dòng)狀態(tài)和自由液面對(duì)其分散的影響.
基于FLUENT軟件的VOF法對(duì)氣-液連續(xù)相建模,很好地捕捉氣液分界面,模型更接近實(shí)際工況,直觀顯示自由液面的變化;基于離散元法使用軟件EDEM對(duì)固體顆粒進(jìn)行離散單元建模,通過兩軟件的聯(lián)合仿真直觀模擬固體顆粒在罐內(nèi)的位置信息和運(yùn)動(dòng)情況,得到的固體顆粒分散情況與利用歐拉法得到的結(jié)果一致.
10. 拉格朗日流體連續(xù)方程推導(dǎo)歐拉連續(xù)方程
1拉格朗日公式
拉格朗日方程
對(duì)于完整系統(tǒng)用廣義坐標(biāo)表示的動(dòng)力方程,通常系指第二類拉格朗日方程,是法國(guó)數(shù)學(xué)家J.-L.拉格朗日首先導(dǎo)出的。通常可寫成:
式中T為系統(tǒng)用各廣義坐標(biāo)qj和各廣義速度q'j所表示的動(dòng)能;Qj為對(duì)應(yīng)于qj的廣義力;N(=3n-k)為這完整系統(tǒng)的自由度;n為系統(tǒng)的質(zhì)點(diǎn)數(shù);k為完整約束方程個(gè)數(shù)。
插值公式
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f(x)在給定互異點(diǎn)x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式
P1(x) = ax + b