2020阿v天堂网手机版-2020国产成人精品视频人-2020国产成人久久精品-2020国产精品-2020国产精品久久久久-2020国产精品视频

返回首頁

拉格朗日的限定條件(拉格朗日限定條件求最值)

來源:m.2axaiv.cn???時(shí)間:2023-04-18 23:31???點(diǎn)擊:258??編輯:admin 手機(jī)版

一、拉格朗日條件?

[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:

(1)在閉區(qū)間[a,b]上連續(xù);

(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得

顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。

二、拉格朗日乘數(shù)法適用條件?

拉格郎日乘數(shù)法的適用條件是乘數(shù)不等于0。

求最值(最值是某個(gè)區(qū)間的最大或最小,注意最大/最小可能有同值的多個(gè),所以也不唯一哈,極值是一個(gè)小范圍,很小很小,內(nèi)的最值).因?yàn)樽钪悼偸前l(fā)生在極值點(diǎn)+區(qū)間邊界點(diǎn)+間斷點(diǎn)處,所以可以用拉朗乘數(shù)求出極值,用邊界和間斷點(diǎn)極限求出可疑極值,比較他們的大小,就可以找到區(qū)間內(nèi)的最值了.特別地,若函數(shù)在區(qū)間內(nèi)用拉朗求出僅一個(gè)極值,切很易判定沒有其他可疑極值點(diǎn),就可以直接判斷那個(gè)極值是最值;或者可以判斷函數(shù)在所給區(qū)間內(nèi)單調(diào)(比如exp(x^2+y^2)在(x>0,y>0)時(shí)單調(diào)遞增),就不用求極值(因?yàn)闆]有),直接求區(qū)間邊界(或者間斷點(diǎn),有間斷點(diǎn)也可以單調(diào)的)作為最值。

三、拉格朗日條件極值法?

判斷是極大值還是極小值點(diǎn),一個(gè)初步的方法是依靠經(jīng)驗(yàn)和對問題的認(rèn)識。當(dāng)不能作出有效判斷時(shí),可以求取函數(shù)的二階導(dǎo)數(shù)進(jìn)行判斷,其實(shí)一個(gè)簡單的方法是比較該極值點(diǎn)的函數(shù)值與相鄰點(diǎn)的函數(shù)來作出判斷。

至于存在不能化為無條件極值的問題,一般是先不管約束條件建立求解極值點(diǎn)的方程,然后再限制在約束條件下求出最后解答,具體的過程,建議參看變分原理等數(shù)學(xué)或力學(xué)書籍,如《計(jì)算動(dòng)力學(xué)》中就有提到,不過這本書不是純粹的數(shù)學(xué)推演。

四、拉格朗日的故事?

拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學(xué)。

直到16歲時(shí),拉格朗日仍十分偏愛文學(xué),對數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對牛頓產(chǎn)生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。

在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價(jià)。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。

1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國院士。

1762年,法國科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽之間的攝動(dòng)問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經(jīng)過數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。

1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長。在擔(dān)任所長的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問題》獲獎(jiǎng);1773年,其論文《論月球的長期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。

在柏林科學(xué)院工作期間,拉格朗日對代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說是伽羅華建立群論的基礎(chǔ)。

五、拉格朗日法則?

拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。

是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。

在研究波動(dòng)問題時(shí),常用拉格朗日法

六、拉格朗日系數(shù)?

設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即

L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,

L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,

φ(x,y)=0

由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。

七、拉格朗日著作?

約瑟夫·拉格朗日

外文名

Joseph-Louis Lagrange

別名

拉格朗日

性別

出生日期

1736年

去世日期

1813年4月10日

國籍

法國

出生地

意大利都靈

職業(yè)

數(shù)學(xué)家

物理學(xué)家

代表作品

《關(guān)于解數(shù)值方程》和《關(guān)于方程的代數(shù)解法的研究》

主要成就

拉格朗日中值定理等

數(shù)學(xué)分析的開拓者

八、拉格朗日極值?

在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。

引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程

此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。

九、拉格朗日的定義范圍?

拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。

十、拉格朗日定理的意義?

拉格朗日定理的意義如下:

1、拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情況和推廣,它是微分學(xué)應(yīng)用的橋梁,在理論和實(shí)際中具有極高的研究價(jià)值。

2、幾何意義: 若連續(xù)曲線在 兩點(diǎn)間的每一點(diǎn)處都有不垂直于x軸的切線,則曲線在A,B間至少存在1點(diǎn) ,使得該曲線在P點(diǎn)的切線與割線AB平行。

3、運(yùn)動(dòng)學(xué)意義:對于曲線運(yùn)動(dòng)在任意一個(gè)運(yùn)動(dòng)過程中至少存在一個(gè)位置(或一個(gè)時(shí)刻)的瞬時(shí)速率等于這個(gè)過程中的平均速率。拉格朗日中值定理在柯西的微積分理論系統(tǒng)中占有重要的地位。可利用拉格朗日中值定理對洛必達(dá)法則進(jìn)行嚴(yán)格的證明,并研究泰勒公式的余項(xiàng)。從柯西起,微分中值定理就成為研究函數(shù)的重要工具和微分學(xué)的重要組成部分。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 青青青青手机在线观看 | 在线观看黄免费 | 日本高清影院 | 人人干夜夜操 | 亚洲欧美日本视频 | 五月激情久久 | 亚洲三级免费 | 速度与激情9免费完整版高清 | 婷婷色5月| 日韩爱爱小视频 | 亚洲欧美在线一区二区 | 日韩在线观看一区二区三区 | 人碰人操 | 综合久久久久6亚洲综合 | 午夜一级精品免费毛片 | 手机在线观看亚洲国产精品 | 婷婷在线影院 | 日韩视频欧美视频 | 色婷婷一区二区三区四区成人 | 欧美性色一级在线观看 | 午夜色片 | 日本一区二区三区国产 | 青青青激情视频在线最新 | 日韩三级视频 | 亚洲tv精品一区二区三区 | 日本亚洲欧美美色 | 欧美视频在线观看xxxx | 五月婷婷影院 | 日韩精品a在线视频 | 探花视频在线看视频 | 午夜视频观看 | 婷婷99精品国产97久久综合 | 四虎影永久在线观看精品 | 性欧美日本 | 热99热| 日本福利网址 | 欧美一级片黄色 | 天天干天天插天天射 | 五月婷婷六月丁香综合 | 色综合久久天天综线观看 | 天堂中文在线免费观看 |